Year 9 Energy

	LESSON CONTENT	3	:	\odot
1	Energy stores			
2	Energy transfers and Units			
3	Conservation of energy			
4	Efficiency			
5	Sankey diagrams			
6	Power			
7	Heat loss in homes			
8	Payback time			

Y9 ENERGY

		Y9 ENER	GY				
POWER (W) = ENERGY (J) / TIME (s)	1. Equation	PAYBACK TIME (Years) = COST OF INSTALLATION (£) / ANNUAL SAVING (£)					
$1W = 1J/s$ $1 kW = 1000 W$ $1 kJ = 1000 J$ hours \rightarrow minutes \rightarrow seconds x60 x60	 Identify the variables Substitution Rearrange Answer Units 	THERMOGRAM heat over the su • White, yello → worst ins • Blue and gre	: Shows the distributi irface of a house. w and red areas: WAI ulated een areas: COOLEST -	on of RMEST → best			
Power calculations: Calculate the power of a car that uses 6600J of chemical energy store in 3s. Power = Energy / Time Power = 6600J / 3s Power = 2200W Calculate the power of a person that does 8kJ of work in 4 hours. Power = Energy / Time Power = Energy / Time Power = Energy / Time Power = 8000J / 14400 s Power = 0.56 W (2 s.f.) Calculate the energy used by a 800W washing machine in 1 minute. Power = Energy / Time 800W = Energy / Time 800W = Energy / 1 min x 60) Energy = 48000 J (2 s.f.)		insulated Poorly insulated house loses MORE ENERGY \rightarrow COSTS MORE to heat \rightarrow more pollution (carbon dioxide) created.					
		Factors that ne insulating a hor Where heat Cost Payback tin Availability Benefit and	ed to be considered v ne? t is lost from ne of materials I feasibility	Through the reot fit iof insulation Through window fit double grazing and custom Through pa around doo		Heat losses from a house and how to reduce them Through the walk insulation Through the floor: If cardy wal	
		WHERE LOST	ANNUAL SAVING (£)	METHOD OF INSULATION	COST OF INSTALLATION (£)	PAYBACK TIME (YEARS)	
		roof	250	fibre-glass in loft	300	300 / 250 = 1.2	
		walls	850 / 2.9 = 293	foam filled cavity	850	2.9	
* Remember to convert all variables into SI units and rearrange the equation where necessary *		windows	100	double glazing	100 x 45 = 4500	45	
		doors	150	draught proofing	5	5 / 150 = 0.01	

WORD	MEANING
Energy	Energy enables something to do physical work involving the application of a force.
Energy store	When energy is in one form or part of a system e.g. an object high up, or a stretched spring. Often referred to as potential energy.
System	An object or a group of objects.
Energy transfer	Process in which energy is moved from one store to another.

Chemical energy	The energy associated with a fuel.
Kinetic energy	The energy of a moving object.
Gravitational potential energy	The energy stored in an object that is raised above the ground.
Elastic potential energy	Energy that is stored in an object as a result of the object being
	stretched or compressed.
Thermal energy	Energy associated with a heated object.
Mechanical / physical energy	Energy due to an object's motion (kinetic) or position (potential).
Law of conservation of energy	The idea that energy cannot be created or destroyed, only transferred
	from one store to another.
Useful energy	Energy transferred in the desired store to do work.
Wasted energy	Energy transferred in a store that is not wanted.
Energy dissipation	Transfer of energy from a device as unwanted forms.
Joules (J)	SI unit of energy, symbol J
Kilojoule (kJ)	1000J is equivalent to 1 kJ
Sankey diagram	A graphic illustration / flow diagram of energy transfers that take
	place in a system. The width of the arrows is proportional to the size
	of the energy store.
Efficiency	Useful output energy transfer divided by the total input energy
	transfer – may be expressed as a percentage or decimal.
Power	The rate at which energy is transferred. It is the amount of energy
	moved from one store to another per unit time. (P = E/t)
Watt (W)	Unit of power (1kW = 1000W)
Payback time	The time it takes to save (in reduced electricity bills) the amount of
	money spent on installing a renewable resource for generating
	electricity. (Payback time = cost of installation / annual saving)
Insulation	Process of keeping heat, sound or electricity from spreading. It is also the
	material used to reduce the rate of heat transfer.
Draught excluders	A device (such as a strip of wood, or a long <u>cylindrical cushion</u>) placed
	at the <u>bottom</u> of a <u>door</u> to keep out <u>draughts</u> .
Cavity-wall insulation	Used to reduce heat loss through a cavity wall by filling the air space with
	a material (e.g. mineral wool or foam) that inhibits heat transfer.
Double glazing	Windows which have two layers of glass with a space between them,
	designed to reduce loss of heat and exclude noise.
Loft insulation	A material (e.g. fibre glass) that is laid across the loft to reduce the rate of
	heat transfer out of the roof.

EQUATIONS

Efficiency = Useful output energy transfer (J) / Total input energy transfer (J)

Power (W) = Energy (J) / Time (s)

Payback time (years) = Cost of installation (£) / Annual saving (£)