QUANTITATIVE CHEMISTRY

CONSERVATION OF MASS AND BALANCED CHEMICAL EQUATIONS

- LAW OF CONSERVATION OF MASS: No atoms are lost or made during a chemical reaction. MASS_{Products} = MASS_{Reactants}
- CHEMICAL REACTIONS: Represented by balanced symbol equations → numbers of atoms of each element are the same on each side

MASS_{Products} = MASS_{Reactants}

Numbers of atoms of the formulae are balanced

Relative atomic mass, A,

The average mass of the atoms of an element compared with carbon-12 (which is given a mass of exactly 12). The average mass must take into account the proportions of the naturally occurring isotopes of the element.

Relative formula mass, M,

The total of the relative atomic masses, added up in the ratio shown in the chemical formula of a substance.

E.G. M_r(NaCl) = Na + Cl = 23 = 35.5 = 58.5 E.G. M_r(MgF₂) = Mg + (2xF) = 24 + (2 x 19) = 62

MASS CHANGES WHEN A REACTANT OR PRODUCT IS A GAS

- LOSING MASS: In thermal decompositions of metal carbonates, CO₂ is produced → escapes into the atmosphere
- GAINING MASS: When a metal reacts with oxygen, mass of oxide produced is greater than the mass of the metal.

PERCENTAGE COMPOSITION BY MASS

- % Z = (Number of atoms of Z) x (A, of Z) / M, of the compound x 100
- E.G. % of oxygen in CO₂(A_r of C = 12 and A_r of O = 16)

% of oxygen = (2 x A_r of O) / M_r of CO₂

% of oxygen = (2 x 16) / 12 + (2x16) = (32 / 44) x 100 = 72.7 %

EMPIRICAL FORMULA

E.G. 5.5g of manganese reacted with 3.2g of oxygen. What is the empirical formula of the oxide of manganese that was formed? (A, of Mn = 55 and A, of O = 16)

ELEMENTS	Mn	0
mass (g)	5.5	3.2
Ar	55	16
Mass / Ar	5.5/55 = 0.10	3.2/16=0.20
Ratio (DIVIDE BY SMALLEST)	0.10/0.10-1	0.20/0.10 - 2
EMPIRICAL FORMULA	MnO ₂	

QUANTITATIVE CHEMISTRY

CHEMICAL MEASUREMENTS

- Whenever a measurement is made, there is always some UNCERTAINTY about the result obtained.
- A measuring cylinder has an uncertainty of ±0.5 cm³. 15 cm³ should be written as 15.0 cm³±0.5 cm³.
- TRUE MEASUREMENT: between 14.5 cm³ and 15.5 cm³.
- · RANGE highest measurement lowest measurement
- MEAN sum of the measurements divided by the number of measurements
- PERCENTAGE UNCERTAINTY = range of measurements / mean x 100

NUMERACY IN SCIENCE

- 1. Equation
- 2. Identify variables
- 3. Substitute
- Rearrange
- Answer
- 6. Units

CONCENTRATION

- Most chemical reactions take place in solutions.
- Concentration can be measured in grams per dm³ (g/dm³).
- Concentration (g/dm³) = mass (g) / volume (dm³)
- 1 dm³ = 1000cm³ (1 litre)
- E.G. What is the concentration in g/dm³ of 2.4g sodium chloride dissolved in 0.5dm³ of water?
- · Concentration mass / volume
- Concentration = 2.4g / 0.5dm³ = 4.8 g/dm³

CONCENTRATION

 The concentration increases as the number of solute particles in a fixed volume increases.

