
| <b>Section 1: Key Terms</b>      |                                                                                                                                                                                                               | 140              |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1 Density                        | How much <b>mass</b> a substance contains <b>compared to its volume</b> . Solids are usually dense because the particles are closely packed.                                                                  | 12               |
| 2 State of matter                | The way in which the <b>particles are arranged</b> – solid, liquid or gas.                                                                                                                                    | 10               |
| 3 Change of state                | When a substance <b>changes from one state of matter</b> to another (e.g. melting is the change from a solid to a liquid). Energy changes the state, not the temperature.                                     | Temperature (%C) |
| 4 Physical change                | A change that can be <b>reversed</b> to recover the original material. <b>E.g. a change of state.</b>                                                                                                         |                  |
| 5 Chemical change                | A change that <b>creates new products</b> . It <b>cannot be reversed</b> . E.g. a chemical reaction.                                                                                                          | 6                |
| 6 Internal energy                | The <b>energy stored</b> inside a system <b>by the particles</b> (atoms and molecules) that make up the system. Internal energy is the <b>total kinetic energy and potential energy of all the particles.</b> | 4                |
| 7 Kinetic energy                 | Energy stored within moving objects (e.g. particles).                                                                                                                                                         | 2                |
| 8 Potential energy               | Energy stored in particles because of their position. The further apart particles are, the greater the potential energy.                                                                                      |                  |
| 9 Specific heat capacity         | The specific heat capacity of a substance is the <b>amount of energy</b> required to <b>raise the temperature of one kilogram</b> of the substance <b>by one degree Celsius</b> .                             | -2               |
| 10 Temperature                   | The average kinetic energy of the particles.                                                                                                                                                                  | .4               |
| 11 Specific latent heat          | The <b>amount of energy</b> required to <b>change the state of one kilogram</b> of the substance with <b>no change in temperature</b> .                                                                       | - Silver         |
| 12 Latent heat of fusion         | Energy required to change state from solid to liquid.                                                                                                                                                         | Cin Cin          |
| 13 Latent heat of vaporisation   | Energy required to change state from liquid to vapour.                                                                                                                                                        | El Cara          |
| 14 Gas Pressure                  | The <b>force</b> exerted by gases on surface as the <b>particles collide</b> with it. <b>As temperature increases, gas pressure increases</b> if the volume stays constant.                                   |                  |
|                                  | 22 Sublimation                                                                                                                                                                                                |                  |
|                                  |                                                                                                                                                                                                               | Section 3: Exp   |
|                                  | 18 Melting 19 Evaporation                                                                                                                                                                                     | 25 Solid         |
|                                  |                                                                                                                                                                                                               | 26 Melting       |
| 15 Solid                         | 20 Freezing 21 Condensation 17 Gas                                                                                                                                                                            | 27 Liquid        |
| Section 2: Equations Calculation | <u> </u>                                                                                                                                                                                                      | 28 Evaporation   |
| 23 Density                       | Density = $\frac{mass}{volume}$ $\rho = \frac{m}{v}$ Density = kilograms / metre <sup>3</sup> (kg/m <sup>3</sup> )   Mass = kilograms (kg)                                                                    | 29 Gas           |

Volume = metres<sup>3</sup> (m<sup>3</sup>)



between particles. As more energy is absorbed the potential energy and

Particles move randomly. As more energy is absorbed the particles move

therefore the internal energy of the material increases.

more quickly and the temperature increases.

28

120

29