Physics 5: Forces								Section 3: Elasticity		
Sectio	on 1: Key term	S				18 Elastic deform	ation	Occurs when a spring is stretched and can then return to its original length.		
L Scalar A value with magnitud			ude (size) only, e.g. speed, distance.			10 Inclastic dofor	mation	Occurs when a spring is stretched and its length is		
2 Vector A value		A value with magnitud	alue with magnitude (size) and direction, e.g. all forces, displacement, velocity.				macion	permanently altered.		
3 Con	tact force	Force between objects	orce between objects that are touching e.g. friction, air resistance.				The length a spring can be stretched before it no longer is			
1 Non	-contact force	Force between separa	ravitational force, magnetic force.		proportionality, a force-extensi		proportionality, a force-extension graph is curved.			
5 Wei	ght	The force of gravity a	acting on an obje	ct's mass. Measured using a newtonmeter.				<u></u>		
5 Cen	tre of mass	The single point at w	hich the object's	weight appears to act.						
7 Resultant force		A resultant force is a si object.	has the same effect as all the forces acting on an				×			
3 Wor	k done	Vork is done when an object is moved through a distance . When work is done against riction there is a temperature rise .				vtons)	/	Limit of proportionality		
Momentum (HT)		loving objects with mass have momentum. Momentum is "mass in motion".				Nev		21 Force-extension graph		
10 Conservation of momentum (HT)		In a closed system, the total momentum before an event is equal to the total momentum after the event.				Force		Extension in		
Section	on 2: Equation Equation	s to learn	Symbol equation	Units				proportional to force		
11	Weight = mass strength	x gravitational field	W = m g	Weight – newtons (N) Mass – kilograms (kg) GFS – newtons per kilogram (N/kg)		Extension (metres)				
12	Work done = force x distance		W = F s	Work done – joules (J) Force – newtons (N) Distance – metros (m)		Section 4: Force	es and Braking			
13 Force = spring co		constant x extension	F = k e	Force – newtons (N) Spring constant – newtons per metre (N/m)		21 Stopping distance	travels during the driver's reaction time (thinking distance) and the distance it travels under the braking force (braking distance).			
				Extension – metres (m)		22 Thinking	The distance conclude two velocities driven is not stime.			
L4 Distance = speed x ti		ed x time	s = v t	Distance – metres (m) Speed – metres per second (m/s) Time – seconds (s)		distance	The time	e it takes for a driver to react, typically 0.2-0.9s. Affected by		
		hango in volocity	ο _ Δ./		_	23 Reaction time	ne tirednes	ss, drugs, alcohol and distractions.		
15	time taken		a – <u>Av</u> t	Velocity = metres per second squared (m/s ²) Time = seconds (s)		24 Braking distance	The dista conditio	nce a vehicle travels under braking. Affected by weather ns (e.g. rain or ice) and the conditions of the brakes and tyres		
.6 Resultant force = mass x acceleration		F = m a Force – newtons (N) Mass – kilograms (kg) Acceleration = metres per second squared (m/s ²)				When the the brak	e brakes are pressed, work done by the friction force between kes and the wheel reduces the kinetic energy of the vehicle			
.7 Momentum = mass x velocity HT)		ρ = m v	Momentum – kilograms metres per second (kg m/s) Mass – kilograms (kg) Velocity = metres per second (m/s)		25 Braking force	and the temperature of the brakes increases . The greater the spe of a vehicle, the greater the force needed to stop the vehicle. Large declarations may lead to loss of control or overheating of the brakes				

Section 5a: Motic	on						
25 Displacement	The distance an object moves and the direction in which it occurs. A vector quantity.						
26 Velocity	The speed of an object in a particular direction .						
27 Acceleration	The change of an object's speed in a certain amount of time. If an object is falli near the surface of the Earth its acceleration will be 9.8m/s² .						
28 Terminal velocity	The maximum speed of a moving object. Occurs when the force moving an object (e.g. gravity) is balanced by frictional forces (e.g. air resistance).						
29 Circular motion (HT)	An object moving in a circle is because the direction in whi velocity is a vector quantity th	has constant speed but changing velocity . This ch the object is moving is constantly changing, and at measures direction and speed.					
30 Distance-time	graph	31 Velocity-time graph					
Constant speed - st	raight line	Constant speed - horizontal line					
Accelerating - curve	ed line upwards	Accelerating - straight line with velocity increasing					
Decelerating - curve horizontal	ed line going towards	Decelerating - straight line with velocity decreasing					
Stationary - horizor	ital line	Stationary - horizontal line on x-axis (velocity = 0)					
		Moving backwards - below x-axis					
Gradient of line can	be calculated to give speed	Gradient of line can be calculated to give acceleration or deceleration					

32 Distance-time graph

33 Velocity-time graph

30

40

Decelerating backwards time

50

(min)

Section 5b: Typical Values of Speed					
32 Walking	1.5 m/s				
33 Running	3 m/s				
34 Cycling	6 m/s				
35 Sound in air	330 m/s				

Section 6: Newto	n's Laws				
36 Newton's First Law	 The velocity of an object will only change if a resultant force is acting on the object. If there is no resultant force the object will: Remain stationary if it was not moving. Continue at a constant speed if it was already moving. 				
37 Newton's Second Law	The acceleration of an object is proportional to the resultant force acting on the object, and inversely proportional to the mass of the object, i.e. Force = mass x acceleration.				
38 Newton's Third Law	Whenever two objects interact , the forces they exert on each other are equal and opposite .				
39 Inertia (HT)	The tendency of objects to continue in their state of rest or of uniform motion .				