

Electricity In The Home

Proton

One of the three fundamental <u>particles</u>^{*} that make up atoms. Of the three fundamental particles, protons are the second largest by mass. They have a positive electrical charge of $+1.6 \times 10^{-19}$ C.

Charge (Q)

Electrical charge is a property or quality that some <u>particles</u>*(and hence bodies) can have which gives rise to forces of attraction or repulsion between those particles. Charge is measured in <u>coulombs</u>* and is represented by the symbol, Q.

Coulomb

The unit of electrical charge*. 1 coulomb is abbreviated to C.

Current (I)

Electrical current is the flow of charges*. In wires, the charges are carried by electrons*. In fluids*, the charges are carried by ions*. Current is measured in amperes* and is represented by the symbol, I.

Ampere

The unit of electrical current, normally abbreviated to amp or A. 1 amp is equal to a flow of 1 <u>coulomb*</u> of <u>charge*</u> per second.

This translates to the formula, amps = coulombs ÷ seconds.

Ammeter

A device for measuring current. An ammeter is always connected directly into a circuit in <u>series</u>* with the components through which the current is flowing. A good ammeter will have virtually no <u>resistance</u>*.

Conductor

A conductor is a medium through which an electric <u>current*</u>will flow.

Circuit

An electrical circuit is a closed loop consisting of an energy source connected by conductors to electrical components.

Cell

A cell is a store of chemical energy used to do electrical work.

Battery

A group of electrical cells connected in series to provide an energy source for a circuit*.

Potential Difference

The measure of energy available to drive a <u>current*</u>. Potential Difference is measured in <u>volts*</u> and is represented by the symbol, V. Potential difference can sometimes be referred to as voltage.

Volt

The unit of potential difference* or voltage .

Voltmeter

A device for measuring potential difference* or voltage .

Circuit

An electrical circuit is a closed loop consisting of an energy source connected by conductors to electrical components.

Parallel

In a parallel electrical circuit, the potential difference is the same across all components. The current is shared between the components.

Series

In a series electrical circuit, the current is the same at all points in the circuit. The potential difference is shared between the components.

Power

The amount of <u>energy</u> transferred per second. Power is measured in watts and is represented by the symbol, P.

Watt

The unit of power. 1 watt is defined as the consumption of energy at the rate of 1 joule per second.

Resistance (R)

Resistance is the extent to which a <u>conductor</u>* slows (hinders) the flow of an electric current. Resistance is measured in <u>ohms</u>* and is represented by the symbol, R.

Ohm

The unit of electrical <u>resistance*</u>.

Resistor

A resistor is a circuit component designed to reduce current.

Ohm's Law

Ohm's Law quantifies the relationship between <u>voltage</u>*,<u>resistance</u>*, and <u>current</u>*. This relationship states that: The potential difference (voltage) across an ideal conductor is proportional to the current through it. The constant of proportionality is called the "resistance", R.

LDRs (light-dependent resistors)

Are used to detect light levels, for example, in automatic security lights. Their resistance decreases as the light intensity increases

Thermistors

Are used as temperature sensors, for example, in fire alarms. Their resistance decreases as the temperature increases