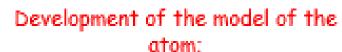
Atoms, elements & compounds

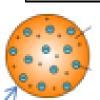
Everything is made of atoms. it is the smallest part of an element

Elements:

There are about 100 different elements, each with a symbol


Compounds;

- Are formed by elements in chemical reactions
- Are 2 or more elements that are chemically combined



Early ideas;

Before the, discovery of the electron atoms were tiny spheres, they couldn't ∳be divided

New experimental evidence may lead to the model being changed or replaced

Experiments now

show nucleus is made Niels Bohr; of smaller particles Adapted the of positive charge

Plum púdding;

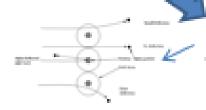
After the electron was discovered the atom became a ball of positive charge with negative electrons scattered in it.

nuclear model suggesting electrons in orbitals at set distance

James Chadwick:

Nucleus

development;


Evidence to show the existence of neutrons in the 🛂 nucleus:

Showed that the mas of an atom was concentrated in the centre, it was charged too

Relative charges;

Atomic number:

The proton number, it is different for every element

Name of particle	Relative charge
Proton	+1
Neutron	0
Electron	-1

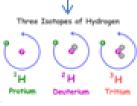
Atoms:

An atom has no overall charge, the number of protons = the number of electrons

(Mass number) 23 Na (Atomic number) 11 Na

Mass Number:

The number of protons & neutrons in the nucleus

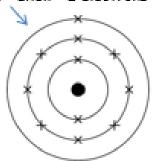

Size and mass:

- Very small, \(\simega\)
 radius is 0.1nm
 (1x10-10m)
- Mass is mainly in the nucleus

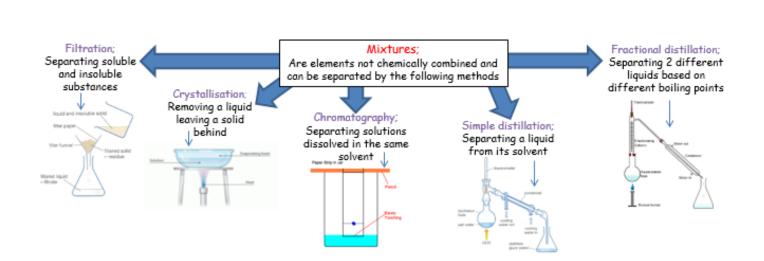
Name of particle	Relative
Proton	1
Neutron	1
Electron	Very small

Isotopes;

Atoms that have the same number of protons (element), but different numbers of neutrons


Electronic configurations;

- Electrons fill the lowest energy levels first
- This starts from the nucleus, following a set pattern up to the following maximum
- 1st shell 2 electrons
- 2nd shell 8 electrons
- 3rd shell 8 electrons
- 4th shell 2 electrons


Relative Atomic Mass:

- This is the mass of the element that takes into account the relative abundance of isotopes,
- · Calculated by=

(mass x abundance) + (mass x abundance) 100

4.1 Atomic structure (Chemistry)

Mendeleev;

Leaving gaps Changing the order of the

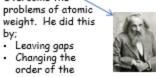
elements were

elements

Predicted

discovered

Differences


were accounted

for by isotopes

Overcome the

↑Early tables: ↑

- First attempts to classify elements were made before subatomic particles were discovered
- Based on atomic weight
- Wrong groups used

- Today; · Elements with similar properties arranged in
- groups Based on properties All have the same number of electrons in the outer shell

Modern periodic table;

The arrangement of elements in a table based on proton number, properties and outer electron number

Non-metals; • Form

Metals & non-metals;

Group 1;

- Alkali metals
- 1 outer electron
- Reactivity increases the group

Group 7;

- Halogens 7 outer electrons
- Non-metals Molecules made of
- pairs of atoms

Group 0; Noble gases

- Unreactive/ stable - full outer shell of electrons
- Don't form molecules easily
- boiling point increases going down group 1

18**Ar**

Metals;

- Majority of elements are metals
- Form positive ions
- Found on left hand side, middle and bottom of table/

Development of the periodic table;

As more elements were discovered scientist tried to classify them

- going down

